Amplification of a reactive oxygen species signal in axotomized retinal ganglion cells.

PubMed ID: 14580319

Author(s): Nguyen SM, Alexejun CN, Levin LA. Amplification of a reactive oxygen species signal in axotomized retinal ganglion cells. Antioxid Redox Signal. 2003 Oct;5(5):629-34. PMID 14580319

Journal: Antioxidants & Redox Signaling, Volume 5, Issue 5, Oct 2003

Retinal ganglion cells (RGCs) undergo apoptosis after axonal injury. Elucidation of the sequence of intracellular events proximal to caspase activation may allow development of effective neuroprotective strategies. In this study, we explored the role that reactive oxygen species may have in signaling RGC apoptosis after axonal injury. Using the fluorescent probe dihydroethidium, we were able to measure intracellular superoxide anion production. We found that axotomized RGCs exposed to oxidative stress exhibited a secondary superoxide burst. The broad-spectrum caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethyl ketone did not block the burst, suggesting it is proximal to caspase activation, but it was inhibited by cycloheximide, consistent with a requirement for protein synthesis. These results are consistent with RGC axotomy inducing synthesis of one or more proteins that mediate oxidative amplification. This could be an early event in signaling of RGC apoptosis after axonal injury.