α5β1 Integrin Promotes Anchoring and Integration of Transplanted Stem Cells to the Trabecular Meshwork in the Eye for Regeneration.

Donna Peters // Publications // Mar 01 2020

PubMed ID: 31854234

Author(s): Xiong S, Xu Y, Wang Y, Kumar A, Peters DM, Du Y. α5β1 integrin promotes anchoring and integration of transplanted stem cells to the trabecular meshwork in the eye for regeneration. Stem Cells Dev. 2020 Mar 1;29(5):290-300. doi: 10.1089/scd.2019.0254. Epub 2020 Jan 20. PMID 31854234

Journal: Stem Cells And Development, Volume 29, Issue 5, 03 2020

Stem cell-based therapy to restore the function of abnormal trabecular meshwork (TM) and decrease intraocular pressure (IOP) provides a novel approach to treat open-angle glaucoma. However, molecular mechanism for stem cells homing and anchoring to the TM remains unclear. This study aimed to discover the function of integrins in homing and integration of exogenous TM stem cells (TMSCs) to the TM. Integrin expression in TMSCs and fibroblasts was evaluated by quantitative real-time PCR (qPCR), flow cytometry, immunofluorescent staining, and western blotting. Expression of integrin ligand fibronectin was detected in cultured TM cells and murine TM tissue by immunostaining. Cell affinity to TM cells or fibronectin matrix was examined to compare TMSCs with TMSCs functionally blocked with an α5β1 integrin antibody. TMSCs and TMSCs with α5β1 integrin-blocking were intracamerally injected into wild-type mice. Wholemounts and cryosections were analyzed to discover cell distribution and integration at 3 days and 1 month. IOP was measured to detect possible changes. We discovered that human TMSCs expressed a higher level of α5β1 integrin than fibroblasts, but similar levels of αvβ3 and αvβ5 integrin. Upregulation of fibronectin was found in both TM cells treated with dexamethasone for 14 days and murine TM tissues damaged by laser photocoagulation. TMSCs were able to attach to the TM cells and fibronectin matrix in vitro. When the surface α5β1 integrin was blocked, the attached cell numbers were significantly reduced. Both TMSCs and TMSCs incubated with an α5β1 integrin-blocking antibody could home to the mouse TM after injection. TMSCs blocked with the α5β1 integrin-blocking antibody were not retained in the TM tissue at 1 month. The injected cells did not affect mouse IOP. In conclusion, highly expressed α5β1 integrin participates in maintaining TMSCs anchored and integrated to the TM, which would be crucial for stem cell-based therapy for glaucoma.