Consensus Recommendations for Studies of Outflow Facility and Intraocular Pressure Regulation Using Ex Vivo Perfusion Approaches.

PubMed ID: 39693082

Author(s): Acott TS, Fautsch MP, Mao W, Ethier CR, Huang AS, Kelley MJ, Aga M, Bhattacharya SK, Borras T, Bovenkamp D, Chowdhury UR, Clark AF, Dibas MI, Du Y, Elliott MH, Faralli JA, Gong H, Herberg S, Johnstone MA, Kaufman PL, Keller KE, Kelly RA, Krizaj D, Kuehn MH, Li HL, Lieberman R, Lin SC, Liu Y, McDonnell FS, McDowell CM, McLellan GJ, Mzyk P, Nair KS, Overby DR, Peters DM, Raghunathan V, Rao PV, Roddy GW, Sharif NA, Shim MS, Sun Y, Thomson BR, Toris CB, Willoughby CE, Zhang HF, Freddo TF, Fuchshofer R, Hill KR, Karimi A, Kizhatil K, Kopcyznski CC, Liton P, Patel G, Peng M, Pattabiraman PP, Prasanna G, Reina-Torres E, Samples EG, Samples JR, Steel CL, Strohmaier CA, Subramanian P, Sugali CK, van Batenburg-Sherwood J, Wong C, Youngblood H, Zode GS, White E, Stamer WD. Consensus Recommendations for Studies of Outflow Facility and Intraocular Pressure Regulation Using Ex Vivo Perfusion Approaches. Invest Ophthalmol Vis Sci. 2024 Dec 2;65(14):32. doi: 10.1167/iovs.65.14.32. PMID 39693082

Journal: Investigative Ophthalmology & Visual Science, Volume 65, Issue 14, Dec 2024

Intraocular pressure (IOP) elevation is the primary risk factor and currently the main treatable factor for progression of glaucomatous optic neuropathy. In addition to direct clinical and living animal in vivo studies, ex vivo perfusion of anterior segments and whole eyes is a key technique for studying conventional outflow function as it is responsible for IOP regulation. We present well-tested experimental details, protocols, considerations, advantages, and limitations of several ex vivo model systems for studying IOP regulation. These include: (1) perfused whole globes, (2) stationary anterior segment organ culture, (3) perfused human anterior segment organ culture, (4) perfused animal anterior segment organ culture, (5) perfused human corneal rims, and (6) perfused human anterior segment wedges. These methods, with due consideration paid to their strengths and limitations, comprise a set of very strong tools for extending our understanding of IOP regulation.