T32 Training Area
Development and Diseases of the Anterior Segment
Research Focus
My laboratory is interested in understanding what types of cell-matrix interactions occur in the anterior chamber of the human eye and the types of signal transduction events that they control. Recent studies in my laboratory have shown that interactions with an extracellular matrix protein called fibronectin help modulate the levels of intraocular pressure in the human eye and the movement of fluid through the anterior chamber. We have identified the domain in fibronectin that regulates intraocular pressure and at least two signaling molecules whose function is controlled by this domain. We are currently looking for the receptor that interacts with this domain and are characterizing the components of the signaling pathways and the biological processes governed by this interaction. Our long-term goal is to identify potential extracellular and intracellular targets that can be used to control glaucoma via genetic approaches such as gene therapy.
Education
PhD: Rutgers University, New Brunswick, NJ
Postgraduate Training: Albert Einstein College of Medicine, Bronx, NY