Role of asparagine-linked oligosaccharides in rhodopsin maturation and association with its molecular chaperone, NinaA.

Nansi Colley // Publications // Aug 11 2000

PubMed ID: 10811808

Author(s): Webel R, Menon I, O’Tousa JE, Colley NJ. Role of asparagine-linked oligosaccharides in rhodopsin maturation and association with its molecular chaperone, NinaA. J Biol Chem. 2000 Aug 11;275(32):24752-9. PMID 10811808

Journal: The Journal Of Biological Chemistry, Volume 275, Issue 32, Aug 2000

Many proteins require N-linked glycosylation for conformational maturation and interaction with their molecular chaperones. In Drosophila, rhodopsin (Rh1), the most abundant rhodopsin, is glycosylated in the endoplasmic reticulum (ER) and requires its molecular chaperone, NinaA, for exit from the ER and transport through the secretory pathway. Studies of vertebrate rhodopsins have generated several conflicting proposals regarding the role of glycosylation in rhodopsin maturation. We investigated the role of Rh1 glycosylation and Rh1/NinaA interactions under in vivo conditions by analyzing transgenic flies expressing Rh1 with isoleucine substitutions at each of the two consensus sites for N-linked glycosylation (N20I and N196I). We show that Asn(20) is the sole site for glycosylation. The Rh1(N20I) protein is retained within the secretory pathway, causing an accumulation of ER cisternae and dilation of the Golgi complex. NinaA associates with nonglycosylated Rh1(N20I); therefore, retention of nonglycosylated rhodopsin within the ER is not due to the lack of Rh1(N20I)/NinaA interaction. We further show that Rh1(N20I) interferes with wild type Rh1 maturation and triggers a dominant form of retinal degeneration. We conclude that during maturation Rh1 is present in protein complexes containing NinaA and that Rh1 glycosylation is required for transport of the complexes through the secretory pathway. Failure of this transport process leads to retinal degeneration.