Modulation of VE-cadherin and PECAM-1 mediated cell-cell adhesions by mitogen-activated protein kinases.

PubMed ID: 12938162

Author(s): Wu J, Sheibani N. Modulation of VE-cadherin and PECAM-1 mediated cell-cell adhesions by mitogen-activated protein kinases. J Cell Biochem. 2003 Sep 1;90(1):121-37. PMID 12938162

Journal: Journal Of Cellular Biochemistry, Volume 90, Issue 1, Sep 2003

Endothelial cell transition from a differentiated, quiescent phenotype to a migratory, proliferative phenotype is essential during angiogenesis. This transition is dependent on alterations in the balanced production of stimulatory and inhibitory factors, which normally keep angiogenesis in check. Activation of MAPK/ERKs is essential for endothelial cell migration and proliferation. However, its role in regulation of endothelial cell adhesive mechanisms requires further delineation. Here, we show that sustained activation of MAPK/ERKs results in disruption of cadherin-mediated cell-cell adhesion, down-regulation of PECAM-1 expression, and enhanced cell migration in microvascular endothelial cells. Expression of a constitutively active MEK-1 in mouse brain endothelial (bEND) cells resulted in down-regulation of VE-cadherin and catenins expression concomitant with down-regulation of PECAM-1 expression. In contrast, inhibition of MEK-1 restored parental morphology, cadherin/catenins expression and localization. These data are further supported by our observation that sustained activation of MAPK/ERKs in phorbol myristate acetate incubated HUVEC lead to disruption of cadherin-mediate cell-cell interactions and enhanced capillary formation on Matrigel. Thus, sustained activation of MAPK/ERKs plays an important role in disruption of cell-cell adhesion and migration of endothelial cells.

Copyright 2003 Wiley-Liss, Inc.