Familial aggregation of components of the multiple metabolic syndrome in the Framingham Heart and Offspring Cohorts: Genetic Analysis Workshop Problem 1.

Kleins Lab // Publications // Dec 31 2003

PubMed ID: 14975162

Author(s): Lee KE, Klein BE, Klein R. Familial aggregation of components of the multiple metabolic syndrome in the Framingham heart and offspring cohorts: genetic analysis workshop problem 1. BMC Genet. 2003 Dec 31;4 Suppl 1:S94. PMID 14975162

Journal: Bmc Genetics, Volume 4 Suppl 1, Dec 2003

BACKGROUND The multiple metabolic syndrome is defined by a clustering of risk factors for cardiovascular disease. We sought to evaluate the familial correlations of the components of the syndrome using data from the Framingham Heart Study original and offspring cohorts as provided for the Genetic Analysis Workshop 13. Measures of plasma cholesterol (total and HDL), body mass index (BMI), and systolic blood pressure were used from selected calendar years of exams. Familial correlations were calculated using FCOR in S.A.G.E.

RESULTS The sibling correlations were relatively high for all measures and exams, from 0.17 for systolic blood pressure to 0.27 for HDL cholesterol. The parent-child correlations were very similar, except for systolic blood pressure. The avuncular correlations were much smaller and the cousin correlations were even smaller. For HDL cholesterol the avuncular correlation was half the sibling correlation and the cousin correlation was half that again. Spousal correlations ranged from 0.07 for systolic blood pressure to 0.34 for BMI. Correlations were somewhat lower from 1984 to 1987 examinations than from 1971 to 1975 examinations, except for spousal correlations for systolic blood pressure and BMI.

CONCLUSION The results of the family pair correlations are suggestive of genetic determinants of lipid levels and BMI. These components have been shown to be predictive of cardiovascular disease as well as diabetes. Genes in common with each of the components might also influence development of cardiovascular disease and diabetes, both complex diseases.