Regulation of phototransduction responsiveness and retinal degeneration by a phospholipase D-generated signaling lipid.

PubMed ID: 15883198

Author(s): LaLonde MM, Janssens H, Rosenbaum E, Choi SY, Gergen JP, Colley NJ, Stark WS, Frohman MA. Regulation of phototransduction responsiveness and retinal degeneration by a phospholipase D-generated signaling lipid. J Cell Biol. 2005 May 9;169(3):471-9. PMID 15883198

Journal: The Journal Of Cell Biology, Volume 169, Issue 3, May 2005

Drosophila melanogaster phototransduction proceeds via a phospholipase C (PLC)-triggered cascade of phosphatidylinositol (PI) lipid modifications, many steps of which remain undefined. We describe the involvement of the lipid phosphatidic acid and the enzyme that generates it, phospholipase D (Pld), in this process. Pld(null) flies exhibit decreased light sensitivity as well as a heightened susceptibility to retinal degeneration. Pld overexpression rescues flies lacking PLC from light-induced, metarhodopsin-mediated degeneration and restores visual signaling in flies lacking the PI transfer protein, which is a key player in the replenishment of the PI 4,5-bisphosphate (PIP2) substrate used by PLC to transduce light stimuli into neurological signals. Altogether, these findings suggest that Pld facilitates phototransduction by maintaining adequate levels of PIP2 and by protecting the visual system from metarhodopsin-induced, low light degeneration.