Race- and sex-related differences in retinal thickness and foveal pit morphology.

PubMed ID: 20861480

Author(s): Wagner-Schuman M, Dubis AM, Nordgren RN, Lei Y, Odell D, Chiao H, Weh E, Fischer W, Sulai Y, Dubra A, Carroll J. Race- and sex-related differences in retinal thickness and foveal pit morphology. Invest Ophthalmol Vis Sci. 2011 Feb 1;52(1):625-34. doi: 10.1167/iovs.10-5886. Print 2011 Jan. PMID 20861480

Journal: Investigative Ophthalmology & Visual Science, Volume 52, Issue 1, Jan 2011

PURPOSE To examine sex- and race-associated differences in macular thickness and foveal pit morphology by using spectral-domain optical coherence tomography (SD-OCT).

METHODS One hundred eighty eyes of 90 healthy patients (43 women, 47 men) underwent retinal imaging with spectral-domain OCT. The lateral scale of each macular volume scan was corrected for individual differences in axial length by ocular biometry. From these corrected volumes, Early Treatment Diabetic Retinopathy Study (ETDRS) grids of retinal thickness were generated and compared between the groups. Foveal morphology was measured with previously described algorithms.

RESULTS Compared with the Caucasians, the Africans and African Americans had reduced central subfield thickness. Central subfield thickness was also reduced in the women compared with the men, although the women also showed significant thinning in parafoveal regions. There was no difference between the sexes in foveal pit morphology; however, the Africans/African Americans had significantly deeper and broader foveal pits than the Caucasians.

CONCLUSIONS Previous studies have reported race- and sex-associated differences in macular thickness, and the inference has been that these differences represent similar anatomic features. However, the data on pit morphology collected in the present study reveal an important and significant variation. Between the sexes, the differences are due to global variability in retinal thickness, whereas the variation in thickness observed between the races appears to be driven by differences in foveal pit morphology. These differences have important implications for the use of SD-OCT in detecting and diagnosing retinal disease.