Dexamethasone increases αvβ3 integrin expression and affinity through a calcineurin/NFAT pathway.

PubMed ID: 24100160

Author(s): Faralli JA, Gagen D, Filla MS, Crotti TN, Peters DM. Dexamethasone increases αvβ3 integrin expression and affinity through a calcineurin/NFAT pathway. Biochim Biophys Acta. 2013 Dec;1833(12):3306-3313. doi: 10.1016/j.bbamcr.2013.09.020. Epub 2013 Oct 5. PMID 24100160

Journal: Biochimica Et Biophysica Acta, Volume 1833, Issue 12, Dec 2013

The purpose of this study was to determine how dexamethasone (DEX) regulates the expression and activity of αvβ3 integrin. FACS analysis showed that DEX treatment induced expression of an activated αvβ3 integrin. Its expression remained high as long as DEX was present and continued following DEX removal. FACS analysis showed that the upregulation of αvβ3 integrin was the result of an increase in the expression of the β3 integrin subunit. By real time qPCR, DEX treatment induced a 6.2-fold increase (p<0.04) in β3 integrin mRNA by day 2 compared to control and remained elevated for 6days of treatment and then an additional 10days once the DEX was removed. The increase in β3 integrin mRNA levels required only 1day of DEX treatment to increase levels for 4days in the absence of DEX. In contrast, DEX did not alter β1 integrin mRNA or protein levels. The DEX-induced upregulation of β3 integrin mRNA was partly due to an increase in its half-life to 60.7h from 22.5h in control cultures (p<0.05) and could be inhibited by RU486 and cycloheximide, suggesting that DEX-induced de novo protein synthesis of an activation factor was needed. The calcineurin inhibitors cyclosporin A (CsA) and FK506 inhibited the DEX induced increase in β3 integrin mRNA. In summary, the DEX-induced increase in β3 integrin is a secondary glucocorticoid response that results in prolonged expression of αvβ3 integrin and the upregulation of the β3 integrin subunit through the calcineurin/NFAT pathway.

© 2013.