Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster.

Nansi Colley // Publications // May 01 2014

PubMed ID: 24785692

Author(s): Rosenbaum EE, Vasiljevic E, Brehm KS, Colley NJ. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster. PLoS Genet. 2014 May 1;10(5):e1004349. doi: 10.1371/journal.pgen.1004349. eCollection 2014 May. PMID 24785692

Journal: P Lo S Genetics, Volume 10, Issue 5, May 2014

As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the functions of glycosyl hydrolases in the secretory pathway.