Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging.

PubMed ID: 25682159

Author(s): Chen G, Wang L, Cordie T, Vokoun C, Eliceiri KW, Gong S. Multi-functional self-fluorescent unimolecular micelles for tumor-targeted drug delivery and bioimaging. Biomaterials. 2015 Apr;47:41-50. doi: 10.1016/j.biomaterials.2015.01.006. Epub 2015 Feb 4. PMID 25682159

Journal: Biomaterials, Volume 47, Apr 2015

A novel type of self-fluorescent unimolecular micelle nanoparticle (NP) formed by multi-arm star amphiphilic block copolymer, Boltron® H40 (H40, a 4th generation hyperbranched polymer)-biodegradable photo-luminescent polymer (BPLP)-poly(ethylene glycol) (PEG) conjugated with cRGD peptide (i.e., H40-BPLP-PEG-cRGD) was designed, synthesized, and characterized. The hydrophobic BPLP segment was self-fluorescent, thereby making the unimolecular micelle NP self-fluorescent. cRGD peptides, which can effectively target αvβ3 integrin-expressing tumor neovasculature and tumor cells, were selectively conjugated onto the surface of the micelles to offer active tumor-targeting ability. This unique self-fluorescent unimolecular micelle exhibited excellent photostability and low cytotoxicity, making it an attractive bioimaging probe for NP tracking for a variety of microscopy techniques including fluorescent microscopy, confocal laser scanning microscopy (CLSM), and two-photon microscopy. Moreover, this self-fluorescent unimolecular micelle NP also demonstrated excellent stability in aqueous solutions due to its covalent nature, high drug loading level, pH-controlled drug release, and passive and active tumor-targeting abilities, thereby making it a promising nanoplatform for targeted cancer theranostics.

Copyright © 2015 Elsevier Ltd. All rights reserved.