Progression of Geographic Atrophy in Age-related Macular Degeneration: AREDS2 Report Number 16.

Amitha Domalpally // Publications // Dec 01 2018

PubMed ID: 30060980

Author(s): Keenan TD, Agrón E, Domalpally A, Clemons TE, van Asten F, Wong WT, Danis RG, Sadda S, Rosenfeld PJ, Klein ML, Ratnapriya R, Swaroop A, Ferris FL 3rd, Chew EY; AREDS2 Research Group. Progression of geographic atrophy in age-related macular degeneration: AREDS2 report number 16. Ophthalmology. 2018 Dec;125(12):1913-1928. doi: 10.1016/j.ophtha.2018.05.028. Epub 2018 Jul 27. PMID 30060980

Journal: Ophthalmology, Volume 125, Issue 12, Dec 2018

PURPOSE To analyze the prevalence, incidence, and clinical characteristics of eyes with geographic atrophy (GA) in age-related macular degeneration (AMD), including clinical and genetic factors affecting enlargement.

DESIGN Prospective cohort study within a controlled clinical trial.

PARTICIPANTS Age-Related Eye Disease Study 2 (AREDS2) participants, aged 50-85 years.

METHODS Baseline and annual stereoscopic color fundus photographs were evaluated for GA presence and area. Analyses included GA prevalence and incidence rates, Kaplan-Meier rates, mixed-model regression, and multivariable analysis of the square root of GA, area adjusted for covariates, including clinical/imaging characteristics and genotype.

MAIN OUTCOME MEASURES (1) Presence or development of GA; (2) change in the square root of GA area over time.

RESULTS At baseline, 517 eyes (6.2%) of 411 participants (9.8%) had pre-existing GA (without neovascular AMD), with the following characteristics: 33% central, 67% noncentral; and the following configurations: 36% small, 26% solid/unifocal, 24% multifocal, 9% horseshoe/ring, and 6% indeterminate. Of the remaining 6530 eyes at risk, 1099 eyes (17.3%) of 883 participants developed incident GA without prior neovascular disease during mean follow-up of 4.4 years. The Kaplan-Meier rate of incident GA was 19% of eyes at 5 years. In eyes with incident GA, 4-year risk of subsequent neovascular AMD was 29%. In eyes with incident noncentral GA, 4-year risk of central involvement was 57%. GA enlargement rate (following square root transformation) was similar in eyes with pre-existing GA (0.29 mm/year; 95% confidence interval 0.27-0.30) and incident GA (0.28 mm/year; 0.27-0.30). In the combined group, GA enlargement was significantly faster with noncentrality, multifocality, intermediate baseline size, and bilateral GA (P < 0.0001 for interaction in each case) but not with AREDS2 treatment assignment (P = 0.33) or smoking status (P = 0.05). Enlargement was significantly faster with ARMS2 risk (P < 0.0001), C3 non-risk (P = 0.0002), and APOE non-risk (P = 0.001) genotypes.

CONCLUSIONS Analyses of AREDS2 data on natural history of GA provide representative data on GA evolution and enlargement. GA enlargement, which was influenced by lesion features, was relentless, resulting in rapid central vision loss. The genetic variants associated with faster enlargement were partially distinct from those associated with risk of incident GA. These findings are relevant to further investigations of GA pathogenesis and clinical trial planning.

Published by Elsevier Inc.