Attenuation of mitochondrial respiration by sevoflurane in isolated cardiac mitochondria is mediated in part by reactive oxygen species.

PubMed ID: 15108961

Author(s): Riess ML, Eells JT, Kevin LG, Camara AK, Henry MM, Stowe DF. Attenuation of mitochondrial respiration by sevoflurane in isolated cardiac mitochondria is mediated in part by reactive oxygen species. Anesthesiology. 2004 Mar;100(3):498-505. PMID 15108961

Journal: Anesthesiology, Volume 100, Issue 3, Mar 2004

BACKGROUND Anesthetic preconditioning protects against cardiac ischemia/reperfusion injury. Increases in reduced nicotinamide adenine dinucleotide and reactive oxygen species during sevoflurane exposure suggest attenuated mitochondrial electron transport as a trigger of anesthetic preconditioning. The authors investigated the effects of sevoflurane on respiration in isolated cardiac mitochondria.

METHODS Mitochondria were isolated from fresh guinea pig hearts, and mitochondrial oxygen consumption was measured in the presence of complex I (pyruvate) or complex II (succinate) substrates. The mitochondria were exposed to 0, 0.13, 0.39, 1.3, or 3.9 mM sevoflurane. State 3 respiration was determined after adenosine diphosphate addition. The reactive oxygen species scavengers manganese(III) tetrakis (4-benzoic acid) porphyrin chloride and N-tert-Butyl-a-(2-sulfophenyl)nitrone sodium (10 microM each), or the K(ATP) channel blockers glibenclamide (2 microM) or 5-hydroxydecanoate (300 microM), were given alone or before 1.3 mM sevoflurane.

RESULTS Sevoflurane attenuated respiration for both complex I and complex II substrates, depending on the dose. Glibenclamide and 5-hydroxydecanoate had no effect on this attenuation. Both scavengers, however, abolished the sevoflurane-induced attenuation for complex I substrates, but not for complex II substrates.

CONCLUSION The findings suggest that sevoflurane-induced attenuation of complex I is mediated by reactive oxygen species, whereas attenuation of other respiratory complexes is mediated by a different mechanism. The opening of mitochondrial K(ATP) channels by sevoflurane does not seem to be involved in this effect. Thus, reactive oxygen species formation may not only result from attenuated electron transport by sevoflurane, but it may also contribute to complex I attenuation, possibly leading to a positive feedback and amplification of sevoflurane-induced reactive oxygen species formation in triggering anesthetic preconditioning.