Focus on Kir7.1: physiology and channelopathy.

Bikash Pattnaik // Publications // Jan 01 2014

PubMed ID: 25558901

Author(s): Kumar M, Pattnaik BR. Focus on Kir7.1: physiology and channelopathy. Channels (Austin). 2014;8(6):488-95. doi: 10.4161/19336950.2014.959809. Review. PMID 25558901

Journal: Channels (Austin, Tex.), Volume 8, Issue 6, 2014

Genetic studies have linked alterations in Kir7.1 channel to diverse pathologies. We summarize functional relevance of Kir7.1 channel in retinal pigment epithelium (RPE), regulation of channel function by various cytoplasmic metabolites, and mutations that cause channelopathies. At the apical membrane of RPE, K(+) channels contribute to subretinal K(+) homeostasis and support Na(+)/K(+) pump and Na(+)-K(+)-2Cl(-) cotransporter function by providing a pathway for K(+) secretion. Electrophysiological studies have established that barium- and cesium-sensitive inwardly rectifying K(+) (Kir) channels make up a major component of the RPE apical membrane K(+) conductance. Native human RPE expresses transcripts for Kir1.1, Kir2.1, Kir2.2, Kir3.1, Kir3.4, Kir4.2, and Kir6.1, albeit at levels at least 50-fold lower than Kir7.1. Kir7.1 is structurally similar to other Kir channels, consisting of 2 trans-membrane domains, a pore-forming loop that contains the selectivity filter, and 2 cytoplasmic polar tails. Within the cytoplasmic structure, clusters of amino acid sequences form regulatory domains that interact with cellular metabolites and control the opening and closing of the channel. Recent evidence indicated that intrinsic sequence motifs present in Kir7.1 control surface expression. Mutant Kir7.1 channels are associated with inherited eye pathologies such as Snowflake Vitreoretinal Degeneration (SVD) and Lebers Congenital Amaurosis (LCA16). Based on the current evidence, mutations implicated in channelopathies have the potential to be used for genetic testing to diagnose blindness due to Kir7.1.