Enhancement of thermal reversibility and stability of human carbonic anhydrase II by mesoporous nanoparticles.

Publications // Sheibani Lab // Apr 01 2015

PubMed ID: 25600988

Author(s): Khatibi A, Ma’mani L, Khodarahmi R, Shafiee A, Maghami P, Ahmad F, Sheibani N, Moosavi-Movahedi AA. Enhancement of thermal reversibility and stability of human carbonic anhydrase II by mesoporous nanoparticles. Int J Biol Macromol. 2015 Apr;75:67-72. doi: 10.1016/j.ijbiomac.2015.01.019. Epub 2015 Jan 17. PMID 25600988

Journal: International Journal Of Biological Macromolecules, Volume 75, Apr 2015

Aminopropyl functionalized PEGylated mesoporous silica nanoparticles [H2N-Pr@PEGylated SBA-15] were synthesized and evaluated as a promising biocompatible additive to study the activity and thermal reversibility and stability of human carbonic anhydrase II (HCA II). For this purpose, the additive was prepared by covalent amino propyl functionalization of mesoporous silica nanoparticles (MSNs) bearing PEG moiety as linker. The MSNs was fully characterized using different techniques including transmission electron microscopy, N2 adsorption-desorption measurements, thermal gravimetric analysis, Fourier transform infrared spectroscopy and dynamic light scattering. The average particle size of [H2N-Pr@PEGylated SBA-15] was about 80 nm and showed high loading capacity for HCA II at pH 7.75 as a target protein. The efficiency of [H2N-Pr@PEGylated SBA-15] in improving reversibility of HCA II was investigated by various techniques including UV-vis, 1,8-Anilinonaphtalene Sulfonate (ANS) fluorescence, circular dichroism (CD), and differential scanning calorimetry. Our results showed that [H2N-Pr@PEGylated SBA-15] can increase the protein thermal reversibility and stability. Herein, kinetic studies were applied to confirm the ability of [H2N-Pr@PEGylated SBA-15] in increasing the activity of HCA II at high temperatures. Together our results present the [H2N-Pr@PEGylated SBA-15] as a water-dispersible and efficient additive for improving the activity, and thermal reversibility and stability of enzyme.

Copyright © 2015 Elsevier B.V. All rights reserved.