Mice dental pulp and periodontal ligament endothelial cells exhibit different proangiogenic properties.

Publications // Sheibani Lab // Feb 01 2018

PubMed ID: 29429515

Author(s): Saghiri MA, Asatourian A, Sorenson CM, Sheibani N. Mice dental pulp and periodontal ligament endothelial cells exhibit different proangiogenic properties. Tissue Cell. 2018 Feb;50:31-36. doi: 10.1016/j.tice.2017.11.004. Epub 2017 Dec 1. PMID 29429515

Journal: Tissue & Cell, Volume 50, Feb 2018

Dental pulp is a highly vascularized tissue with a high regenerative capacity. This is attributed to its unique blood supply and the presence of progenitor or postnatal dental pulp stem cells. Here we aimed to isolate and compare the angiogenic properties of endothelial cells (EC) prepared from mouse dental pulp and periodontal ligament (PDL). EC were isolated from 4-week-old wild type immorto mice. Mice were sacrificed and after mandible isolation, the molar and incisor teeth and the PDL from molar teeth were dissected. EC were prepared by collagenase digestion of tissues and affinity purification using magnetic beads coated with platelet/endothelial cell adhesion molecule-1 (PECAM-1/CD31) antibody. EC prepared from incisor and molar pulps and PDL were examined for expression of appropriate markers by fluorescence-activated cell sorting (FACS) analysis. The proliferation, migration, and capillary morphogenesis of EC were evaluated. Ex vivo sprouting angiogenesis from various tissues was also compared. Data were analyzed at the level of significance of P<0.05. Pulp EC prepared from incisors proliferated and migrated significantly faster than molar and PDL EC (P<0.05). In addition, molar and PDL EC formed a more extensive capillary network when plated on Matrigel. This is consistent with the lower proliferative and migratory characteristics of these cells compared with incisor EC (P<0.05). However, PDL tissue showed significantly more sprouting area than molar and incisor pulp tissues (P<0.05). Thus, pulp EC from molar and incisor and PDL EC present different proangiogenic properties. Collectively our results suggest that EC from different tooth tissue have unique characteristics related to their target tissue and function.

Published by Elsevier Ltd.