Integrating adaptive optics-SLO and OCT for multimodal visualization of the human retinal pigment epithelial mosaic.

Alfredo Dubra // Publications // Mar 01 2021

PubMed ID: 33796365

Author(s): Bower AJ, Liu T, Aguilera N, Li J, Liu J, Lu R, Giannini JP, Huryn LA, Dubra A, Liu Z, Hammer DX, Tam J. Integrating adaptive optics-SLO and OCT for multimodal visualization of the human retinal pigment epithelial mosaic. Biomed Opt Express. 2021 Feb 17;12(3):1449-1466. doi: 10.1364/BOE.413438. eCollection 2021 Mar 1. PMID 33796365

Journal: Biomedical Optics Express, Volume 12, Issue 3, Mar 2021

In vivo imaging of human retinal pigment epithelial (RPE) cells has been demonstrated through multiple adaptive optics (AO)-based modalities. However, whether consistent and complete information regarding the cellular structure of the RPE mosaic is obtained across these modalities remains uncertain due to limited comparisons performed in the same eye. Here, an imaging platform combining multimodal AO-scanning light ophthalmoscopy (AO-SLO) with AO-optical coherence tomography (AO-OCT) is developed to make a side-by-side comparison of the same RPE cells imaged across four modalities: AO-darkfield, AO-enhanced indocyanine green (AO-ICG), AO-infrared autofluorescence (AO-IRAF), and AO-OCT. Co-registered images were acquired in five subjects, including one patient with choroideremia. Multimodal imaging provided multiple perspectives of the RPE mosaic that were used to explore variations in RPE cell contrast in a subject-, location-, and even cell-dependent manner. Estimated cell-to-cell spacing and density were found to be consistent both across modalities and with normative data. Multimodal images from a patient with choroideremia illustrate the benefit of using multiple modalities to infer the cellular structure of the RPE mosaic in an affected eye, in which disruptions to the RPE mosaic may locally alter the signal strength, visibility of individual RPE cells, or even source of contrast in unpredictable ways.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.