PubMed ID: 37798955
Author(s): Shou BL, Venkatesh K, Chen C, Ghidey R, Lee JH, Wang J, Channa R, Wolf RM, Abramoff MD, Liu TYA. Risk Factors for Nondiagnostic Imaging in a Real-World Deployment of Artificial Intelligence Diabetic Retinal Examinations in an Integrated Healthcare System: Maximizing Workflow Efficiency Through Predictive Dilation. J Diabetes Sci Technol. 2024 Mar;18(2):302-308. doi: 10.1177/19322968231201654. Epub 2023 Oct 5. PMID 37798955
Journal: Journal Of Diabetes Science And Technology, Volume 18, Issue 2, Mar 2024
OBJECTIVE In the pivotal clinical trial that led to Food and Drug Administration De Novo “approval” of the first fully autonomous artificial intelligence (AI) diabetic retinal disease diagnostic system, a reflexive dilation protocol was used. Using real-world deployment data before implementation of reflexive dilation, we identified factors associated with nondiagnostic results. These factors allow a novel predictive dilation workflow, where patients most likely to benefit from pharmacologic dilation are dilated a priori to maximize efficiency and patient satisfaction.
METHODS Retrospective review of patients who were assessed with autonomous AI at Johns Hopkins Medicine (8/2020 to 5/2021). We constructed a multivariable logistic regression model for nondiagnostic results to compare characteristics of patients with and without diagnostic results, using adjusted odds ratio (aOR). P < .05 was considered statistically significant.
RESULTS Of 241 patients (59% female; median age = 59), 123 (51%) had nondiagnostic results. In multivariable analysis, type 1 diabetes (T1D, aOR = 5.82, 95% confidence interval [CI]: 1.45-23.40, P = .01), smoking (aOR = 2.86, 95% CI: 1.36-5.99, P = .005), and age (every 10-year increase, aOR = 2.12, 95% CI: 1.62-2.77, P < .001) were associated with nondiagnostic results. Following feature elimination, a predictive model was created using T1D, smoking, age, race, sex, and hypertension as inputs. The model showed an area under the receiver-operator characteristics curve of 0.76 in five-fold cross-validation.
CONCLUSIONS We used factors associated with nondiagnostic results to design a novel, predictive dilation workflow, where patients most likely to benefit from pharmacologic dilation are dilated a priori. This new workflow has the potential to be more efficient than reflexive dilation, thus maximizing the number of at-risk patients receiving their diabetic retinal examinations.