AAV2-Mediated Transduction of the Mouse Retina After Optic Nerve Injury.

Nickells Lab // Publications // Dec 01 2017

PubMed ID: 29204649

Author(s): Nickells RW, Schmitt HM, Maes ME, Schlamp CL. AAV2-mediated transduction of the mouse retina after optic nerve injury. Invest Ophthalmol Vis Sci. 2017 Dec 1;58(14):6091-6104. doi: 10.1167/iovs.17-22634. PMID 29204649

Journal: Investigative Ophthalmology & Visual Science, Volume 58, Issue 14, Dec 2017

PURPOSE Gene therapy of retinal ganglion cells (RGCs) has promise as a powerful therapeutic for the rescue and regeneration of these cells after optic nerve damage. However, early after damage, RGCs undergo atrophic changes, including gene silencing. It is not known if these changes will deleteriously affect transduction and transgene expression, or if the therapeutic protein can influence reactivation of the endogenous genome.

METHODS Double-transgenic mice carrying a Rosa26-(LoxP)-tdTomato reporter, and a mutant allele for the proapoptotic Bax gene were reared. The Bax mutant blocks apoptosis, but RGCs still exhibit nuclear atrophy and gene silencing. At times ranging from 1 hour to 4 weeks after optic nerve crush (ONC), eyes received an intravitreal injection of AAV2 virus carrying the Cre recombinase. Successful transduction was monitored by expression of the tdTomato reporter. Immunostaining was used to localize tdTomato expression in select cell types.

RESULTS Successful transduction of RGCs was achieved at all time points after ONC using AAV2 expressing Cre from the phosphoglycerate kinase (Pgk) promoter, but not the CMV promoter. ONC promoted an increase in the transduction of cell types in the inner nuclear layer, including Müller cells and rod bipolar neurons. There was minimal evidence of transduction of amacrine cells and astrocytes in the inner retina or optic nerve.

CONCLUSIONS Damaged RGCs can be transduced and at least some endogenous genes can be subsequently activated. Optic nerve damage may change retinal architecture to allow greater penetration of an AAV2 virus to transduce several additional cell types in the inner nuclear layer.